日光温室的纹理特征分层提取Extraction of greenhouse information using multiscale texture features
李洪伟;刘勇;
摘要(Abstract):
针对高分辨率影像上日光温室的信息提取问题,该文提出了利用支持向量机、最近邻算法结合纹理特征在不同层上分别提取连片日光温室和独栋日光温室的方法。实验表明:纹理特征能提高分类精度,在大尺度的层上,分类精度提升幅度较大,但在小尺度的层上,分类精度提升幅度会比较小;并不是参与运算特征数越多,分类精度越高,多数情况下光谱+纹理组合的分类精度最高;提取连片日光温室的最优方案是支持向量机和光谱+形状+纹理(7像素×7像素),总精度为92.86%,Kappa系数为0.90,而提取独栋日光温室最优方案为SVM和光谱+纹理(11像素×11像素),总精度为88.39%,Kappa系数为0.86。
关键词(KeyWords): 支持向量机;最近邻法;多尺度纹理;日光温室;基于对象的影像分析
基金项目(Foundation): 国家自然科学基金项目(41271360)
作者(Author): 李洪伟;刘勇;
Email:
DOI: 10.16251/j.cnki.1009-2307.2017.08.024
参考文献(References):
- [1]毛同艳,陈学峰.高效节能日光温室的类型、结构与建造[J].中国农村小康科技,2005(7):36-45.(MAO Tongyan,CHEN Xuefeng.Type,structure and construction of high efficiency and energy saving solar greenhouse[J].Chinese Counfryside Well-off Technology,2005(7):36-45.)
- [2]AG E F,AGUILAR M,AGUILAR F.Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast[J].International Journal of Remote Sensing,2006,27(21):4751-4767.
- [3]AG E F,AGUILAR F J,AGUILAR M A.Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(6):635-646.
- [4]AG E F,LIU J.Automatic greenhouse delineation from QuickBird and Ikonos satellite images[J].Computers and Electronics in Agriculture,2009,66(2):191-200.
- [5]CARVAJAL F,AG E F,AGUILAR F,et al.Relationship between atmospheric corrections and training-site strategy with respect to accuracy of greenhouse detection process from very high resolution imagery[J].International Journal of Remote Sensing,2010,31(11):2977-2994.
- [6]TASDEMIR K,KOC-SAN D.Unsupervised extraction of greenhouses using WorldView-2images[C]//Proceedings of the 2014IEEE International Geoscience and Remote Sensing Symposium(IGARSS).[S.l.]:IEEE,2014.
- [7]ARCIDIACONO C,PORTO S M.Classification of crop-shelter coverage by RGB aerial images:a compendium of experiences and findings[J].Journal of Agricultural Engineering,2010,41(3):1-11.
- [8]孟育红.基于对象影像分析技术提取日光温室遥感信息方法研究[D].兰州:兰州大学,2012:107-108.(MENG Yuhong.Study on extracting greenhouse from remotely sensed imagery using object-based image analysis[D].Lanzhou:Lanzhou University,2012:107-108.)
- [9]TARANTINO E,FIGORITO B.Mapping rural areas with widespread plastic covered vineyards using true color aerial data[J].Remote Sensing,2012,4(7):1913-1928.
- [10]AGUILAR M A,BIANCONI F,AGUILAR F J,et al.Object-based greenhouse classification from GeoEye-1and WorldView-2stereo imagery[J].Remote Sensing,2014,6(5):3554-3582.
- [11]张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57.(ZHANG Jinshui,HE Chunyang,PAN Yaozhong,et al.The high spatial resolution RS image classification based on SVM method with the muti-source data[J].Journal of Remote Sensing,2006,10(1):49-57.)
- [12]张伐伐,李卫忠,卢柳叶,等.SVM多窗口纹理土地利用信息提取技术[J].遥感学报,2012,16(1):67-78.(ZHANG Fafa,LI Weizhong,LU Liuye,et al.Technologies of extracting land utilization information based on SVM method with multi-window texture[J].Journal of Remote Sensing,2012,16(1):67-78.)
- [13]中卫市地方志办公室.中卫年鉴[M].银川:黄河出版传媒集团阳光出版社,2013:167-168.(Zhongwei Local Records Office.Zhongwei yearbook[M].Yinchuan:The Yellow River Publishing Media Group Sunshine Publishing House,2013:167-168.
- [14]LIU Y,BIAN L,MENG Y,et al.Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68(1),144-156.
- [15]CHANG C C,LIN C J.LIBSVM:a library for support vector machines[J].ACM Trans Intell Syst Technol,2011,2(3):1-27.