一种附非负约束秩亏平差模型的迭代算法An iterative algorithm for non-negative constrained rank defect adjustment model
郝天恒;左廷英;赵邵杰;
摘要(Abstract):
针对附非负约束秩亏平差的问题,该文先将最小二乘问题转化为线性互补问题,然后利用极大熵函数的性质对其进行迭代求解,建立了一种附非负约束秩亏平差模型的迭代算法。它充分利用了测量中符号约束的先验信息,只需参数具有非负约束或先将参数转化为非负约束,无须对矩阵求逆,计算简便。文中还针对算法的收敛性进行了分析,并模拟了GPS网平差的算例。数值实验表明,与其他秩亏平差算法相比,该文算法在精度和计算效率方面均具有一定的优势。
关键词(KeyWords): 非负约束;秩亏;线性互补问题;极大熵函数
基金项目(Foundation): 国家自然科学基金项目(41674009,41574006,41674012)
作者(Author): 郝天恒;左廷英;赵邵杰;
Email:
DOI: 10.16251/j.cnki.1009-2307.2020.10.004
参考文献(References):
- [1]PENG J,ZHANG H,SHONG S,et al.An aggregate constraint method for inequality-constrained least squares problems[J].Journal of Geodesy,2006,79(12):705-713.
- [2]王乐洋,许才军,汪建军.附有病态约束矩阵的等式约束反演问题研究[J].测绘学报,2009,38(5):397-401,414.(WANG Yueyang,XU Caijun,WANG Jianjun.Research on equality constraint inversion with ill-posed constraint matrix[J].Acta Geodaetica et Cartographica Sinica,2009,38(5):397-401,414.)
- [3]马洋,欧吉坤,袁运斌,等.采用联合平差法处理附有病态等式约束的反演问题[J].武汉大学学报(信息科学版),2011,36(7):816-819.(MA Yang,OU Jikun,YUAN Yunbin,et al.Solving equality constraint inversion with ill-posed constraint matrix using united method[J].Geomatics and Information Science of Wuhan University,2011,36(7):816-819.)
- [4]谢建,朱建军.等式约束病态模型的正则化解及其统计性质[J].武汉大学学报(信息科学版),2013,38(12):1440-1444.(XIE Jian,ZHU Jianjun.A regularized solution and statistical properties of ill-posed problem with equality constraints[J].Geomatics and Information Science of Wuhan University,2013,38(12):1440-1444.)
- [5]谢建,朱建军.等式约束对病态问题的影响及约束正则化方法[J].武汉大学学报(信息科学版),2015,40(10):1344-1348.(XIE Jian,ZHU Jianjun.Influence of equality constraints on ill-conditioned proplems and constrained regularization method[J].Geomatics and Information Science of Wuhan University,2015,40(10):1344-1348.)
- [6]LU G,KRAKIWSKY E J,LACHAPELLE G.Application of inequality constraint least squares to GPS navigation under selctive availability[J].Manuscripta Geodaetica,1993,18:124.
- [7]ZHU J,SANTERRE R,CHANG X W.A Bayesian method for linear,inequality-constrained adjustment and its application to GPS positioning[J].Journal of Geodesy,2005,78(9):528-534.
- [8]朱建军,谢建.附不等式约束平差的一种简单迭代算法[J].测绘学报,2011,40(2):209-212.(ZHU Jianjun,XIE Jian.A simple iterative algorithm for inequality constrained adjustment[J].Acta Geodaetica et Cartographica Sinica,2011,40(2):209-212.)
- [9]左廷英,陈仲儿,宋迎春.参数有界约束下的最小二乘平差算法[J].测绘工程,2015,24(9):1-4.(ZUOTingying,CHEN Zhonger,SONG Yingchun.On the application of parameter-bounded least squares adjustment algorithm[J].Engineering of Surveying and Mapping,2015,24(9):1-4.)
- [10]肖兆兵,宋迎春,谢雪梅.带有区间不确定性的约束平差算法及应用[J].测绘科学,2018,43(5):100-104.(XIAO Zhaobing,SONG Yingchun,XIE Xuemei.An algorithm with interval uncertain constraint in adjustment model and its application[J].Science of Surveying and Mapping,2018,43(5):100-104.)
- [11]谢雪梅,宋迎春,肖兆兵.参数带有区间约束的平差模型迭代算法[J].测绘学报,2018,47(8):1141-1147.(XIE Xuemei,SONG Yingchun,XIAO Zhaobing.Parameter estimate algorithm in adjustment model with interval constraint[J].Acta Geodaetica et Cartographica Sinica,2018,47(8):1141-1147.)
- [12]夏玉国,宋迎春,谢雪梅.参数带区间约束的子空间截断牛顿平差算法[J].大地测量与地球动力学,2019,39(2):184-188.(XIA Yuguo,SONG Yingchun,XIEXuemei.Subspace truncation newton method for parameter-bounded adjustment problem[J].Journal of Geodesy and Geodynamics,2019,39(2):184-188.)
- [13]ROESE-KOERNER L,SCHUH W D.Convex optimization under inequality constraints in rank-deficient systems[J].Journal of Geodesy,2014,88(5):415-426.
- [14]宋迎春,朱建军,陈正阳,等.部分参数有非负约束平差模型的一种新算法[J].武汉大学学报(信息科学版),2007,32 (10):883-887.(SONG Yingchun,ZHUJianjun,CHEN Zhengyang,et al.A new approach for adjustment model with some nonnegative constrained parameters[J].Geomatics and Information Science of Wuhan University,2007,32(10):883-887.)
- [15]宋迎春,朱建军,罗德仁,等.附非负约束平差模型的最小二乘估计[J].武汉大学学报(信息科学版),2008,33(9):907-909,933.(SONG Yingcun,ZHU Jianjun,LUO Deren,et al.Least squares estimation of nonnegative constrained adjustment model[J].Geomatics and Information Science of Wuhan University,2008,33 (9):907-909,933.)
- [16]崔希璋.广义逆矩阵与测量平差[M].武汉:武汉大学出版社,2001.(CUI Xizhang.Generalized inverse matrix and adjustment[M].Wuhan:Wuhan University Press,2001.)
- [17]崔希璋.广义测量平差[M].武汉:武汉大学出版社,2001.(CUI Xizhang.Generalized surveying adjustment[M].Wuhan:Wuhan University Press,2001.)
- [18]鲁铁定,陶本藻,周世健.矩阵的SVD分解性质及其在秩亏网平差中的应用[J].大地测量与地球动力学,2007,27(5):63-67.(LU Tieding,TAO Benzao,ZHOUShijian.Characteristics of matrix SVD and it’s applications to rank deficiency free network adjustment[J].Journal of Geodesy and Geodynamics,2007,27(5):63-67.)
- [19]王新洲,刘丁酉,张前勇,等.谱修正迭代法及其在测量数据处理中的应用[J].黑龙江工程学院学报,2001,15(2):3-6.(WANG Xinzhou,LIU Dingyou,ZHANG Qianyong,et al.The iteration by correcting characteristic value and its application in surveying data processing[J].Journal of Heilongjiang Institute of Technology,2001,15(2):3-6.)
- [20]吕言,陈纪椿.关于用伪观测法作亏秩平差的一点看法[J].武汉测绘学院学报,1981(1):83-90.(LYU Yan,CHEN Jichun.Some remarks on the adjustment with rank-defects by using pseudo-observations[J].Journal of Wuhan Institute of Surveying and Mapping,1981(1):83-90.)
- [21]王振方,李博峰,沈云中.基于奇异值分解的拟稳平差法[J].测绘通报,2008(5):30-32.(WANG Zhenfang,LI Bofeng,SHEN Yunzhong.An algorithm for quasistable adjustment based on singular value decomposition[J].Bulletin of Surveying and Mapping,2008(5):30-32.)
- [22]陶本藻,唐诗华,皮新.具有约束的自由网平差及其应用[J].测绘学报,1984,13(1):60-68.(TAO Benzao,TANG Shihua,PI Xin.Aplication of free net adjustment with conditions[J].Acta Geodaetica et Cartographica Sinica,1984,13(1):60-68.)
- [23]谢建,朱建军.不等式约束秩亏网平差的算法研究[J].大地测量与地球动力学,2011,31(6):117-120.(XIEJian,ZHU Jianjun.Research on algorithm of inequality constrained rank deficient adjustment[J].Journal of Geodesy and Geodynamics,2011,31(6):117-120.)
- [24]孙艳波.非负线性最小二乘问题与线性互补问题及不动点问题的等价性[J].安徽师范大学学报(自然科学版),2015,38(6):537-540.(SUN Yanbo.The linear non-negative least squares problem and its equivalence with the complementarity problem and the fixed point problem[J].Journal of Anhui Normal University(Natural Science),2015,38(6):537-540.)
- [25]陈国庆,赵素芬.熵函数法的数学理论[J].计算数学,1999,21(4):397-406.(CHEN Guoqing,ZHAO Sufen.Mathematical theory for entropy function method[J].Mathematica Numerica Sinica,1999,21(4):397-406.)
- [26]李庆阳,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社,1999.(LI Qingyang,MO Zizhong,QI Liqun.Numerical solution of nonlinear equations[M].Beijing:Science Press,1999.)