北斗/惯导的快速混合高斯UKF算法Gaussian mixture model UKF for BDS/INS navigation system
戴卿;隋立芬;王凌轩;曾添;田源;
摘要(Abstract):
为进一步改善北斗/惯导中无迹卡尔曼滤波的精度,针对导航系统中噪声随机模型本质上的非高斯分布特性,结合有限高斯概率分布可近似任意概率密度函数的理论,以混合高斯UKF滤波为框架,提出了一种快速混合高斯UKF算法。该算法使用奇异值分解替代无迹变换产生采样点中的协方差平方根计算,和迭代中构造有限分量混合高斯模型二次近似后验二阶矩减少子滤波器数量的思路,改善了传统算法子滤波器数量随迭代次数成指数变化而增加计算成本的状况,一定程度上提高了计算的实时性。通过对北斗/惯导紧耦合系统的数据仿真实验,结果分析表明:相对于传统算法,本文提出的新算法在保证滤波精度的同时,计算量较低、实时性较好,适合于处理非高斯非线性北斗/惯导组合导航定位的滤波计算问题。
关键词(KeyWords): 混合高斯;无迹卡尔曼滤波;奇异值分解;组合导航;时间复杂度
基金项目(Foundation): 国家自然科学基金项目(41674016,41274016,41174006)
作者(Authors): 戴卿;隋立芬;王凌轩;曾添;田源;
DOI: 10.16251/j.cnki.1009-2307.2018.01.005
参考文献(References):
- [1]高社生.组合导航原理及应用[M].西安:西北工业大学出版社,2010:296-366.(GAO Shesheng.Principle and application of integrated navigation[M].Xi’an:Northwestern Polytechnical University Press,2010:296-366.)
- [2]赵琳.非线性系统滤波理论[M].北京:国防工业出版社,2012:76-134.(ZHAO Lin.Nonlinear filtering theory[M].Beijing:National Defense Industry Press,2012:76-134.)
- [3]高怡,高社生.抗差自适应Sage滤波及其在组合导航中的应用[J].测控技术,2015,34(4):135-138.(GAO Yi,GAO Shesheng.Robust adaptively Sage filtering for integrated navigation system[J].Measurement&Control Technology,2015,34(4):135-138.)
- [4]周翟和,刘建业,赖际舟.混合高斯粒子滤波在组合导航中应用的计算量分析[J].中国惯性技术学报,2010,18(5):595-599.(ZHOU Zhaihe,LIU Jianye,LAI Jizhou.Computational complexity of mixture Gaussian particle filter about application in integrated navigation[J].Journal of Chinese Inertial Technology,2010,18(5):595-599.)
- [5]乔少杰,金琨,韩楠.一种基于高斯混合模型的轨迹预测算法[J].软件学报,2015,26(5):1048-1063.(QIAO Shaojie,JIN Kun,HAN Nan.Trajectory prediction algorithm based on Gaussian mixture model[J].Journal of Software,2015,26(5):1048-1063.)
- [6]刘乾坤,隋立芬,陈泉余,等.基于Allan方差的BDS随机误差分析[J].测绘通报,2016(5):18-21.(LIU Qiankun,SUI Lifen,CHEN Quanyu,et al.Stochastic errors analysis of BDS based on allan variance[J].Bulletin of Surveying and Mapping,2016(5):18-21.)
- [7]归庆明,宫轶松.粗差探测的Bayes方法[J].测绘学报,2006,35(4):303-307.(GUI Qingming,GONG Yisong.Bayes method for detection of gross errors[J].Acta Geodaetica et Cartographica Sinica,2006,35(4):303-307.)
- [8]TEREJANU G,SINGLA P,SINGH T.Adaptive Gaussian sum filter for nonlinear bayesian estimation[J].IEEE trans.on Automatiac Control,2011,12(56):2151-2156.
- [9]YANG Minshen,LAI Chienyo,LIN Chiying.A robust EM clustering algorithm for Gaussian mixture models[J].Pattern Recognition,2012,19(11):245-253.
- [10]LI Rongxi,JIKOV V P.Survey of maneuvering target tracking part v:multiple‐model methods[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1254-1280.
- [11]XIAO Xinping,HU Yichen,GUO Huan.Modeling mechanism and extension of GM(1,1)[J].Journal of Systems Engineering and Electronics,2013,24(3):445-453.
- [12]WANG Yuhong,LIU Qin,TANG Jianrong.Optimization approach of background value and initial item for improving prediction precision of GM(1,1)model[J].Journal of Systems Engineering and Electronics,2014,25(1):77-82.
- [13]SHIKAWA Y,TAKEUCHI L,NAKANOB R.Multidirectional search from the primitive initial point for gaussian mixture estimation using variational bayesian method[J].Neural Networks,2010,23(3):356-364.
- [14]RABBOU M A,ELRABBANY A.Integration of GPS precise point positioning and mems-based INS using unscented particle filter[J].Sensors,2015,15(4):7228-7245.
- [15]DU Shi,GAO Yi.Inertial aided cycle slip detection and identification for integrated PPP/GPS and INS[J].Sensors,2012,12(11):344-362.