高维遥感图像的快速分类算法A fast classification algorithm for high-dimensional remote sensing images
孙华生;李晓轩;
摘要(Abstract):
为了实现对高维遥感图像的快速准确分类,提出了一种基于k均值二叉树支持向量机(SVM)的分类方法。该方法通过对选取的训练样本进行k均值聚类,生成支持向量机分类二叉树,作为确定最佳分类顺序的依据,以降低分类过程中的误差累积并提高整体分类精度,而且可缓解由样本数量不均衡导致的分类误差。该方法可在不进行降维处理的情况下,对高维遥感图像进行快速准确分类。测试结果表明,其分类速度和分类精度都优于传统的支持向量机分类结果。
关键词(KeyWords): 支持向量机SVM;k均值二叉树;图像分类;高维数据
基金项目(Foundation): 国家自然科学基金项目(41201454);; 辽宁省大学生创新创业训练计划项目(201410147047)
作者(Authors): 孙华生;李晓轩;
DOI: 10.16251/j.cnki.1009-2307.2016.08.004
参考文献(References):
- [1]HUGHES G F.On the mean accuracy of statistical pattern recognizers[J].IEEE Transactions on Information Theory,1968,14(1):55-63.
- [2]LANDGREBE D A.Signal theory methods in multispectral remote sensing[M].Hoboken:John Wiley&Sons,Inc.,2003.
- [3]RICHARDS J A,JIA X.Remote sensing digital image analysis:an introduction[M].4th ed.Berlin:Springer,2005:364.
- [4]BOSER B E,GUYON I M,VAPNIK V N.A training algorithm for optimal margin classifier[C]//Fifth ACM Annual Workshop on Computational Learning.[S.l.]:[s.n.],1992:144-152.
- [5]CORTES C,VAPNIK V N.Support vector network[J].Machine Learning,1995,20(3):273-297.
- [6]VAPNIK V N.The nature of statistical learning theory[M].New York:Springer,1995.
- [7]GUALTIERI J A,CROMP R F.Support vector machines for hyperspectral remote sensing classification[C]//Proceedings of SPIE.[S.l.]:[s.n.],1998,3584(25):1-28.
- [8]GUALTIERI J A,CHETTRI S R,CROMP R F,et al.Support vector machines applied to AVIRIS data[Z].Summaries of the Airborne Earth Science Workshop,1999.
- [9]KANEVSKI M,POZDNUKHOV A,CANU S,et al.Advanced spatial data analysis and modeling with support vector machines[J].International Journal of Fuzzy Systems,2002,4(1):606-615.
- [10]骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55.
- [11]梁继,王建.Hyperion高光谱影像的分析与处理[J].冰川冻土,2009,31(2):247-253.
- [12]BOTTOU L,CORTES C,DENKER J S,et al.Comparison of classifier methods:a case study in handwritten digit recognition[C]//Proceedings of 12th International Conference on Pattern Recognition and Neural Network.[S.l.]:[s.n.],1994:77-82.
- [13]VAPNIK V.Statistical learning theory[M].New York:John Wiley and Sons Inc.,1998.
- [14]KNERR S,PERSONNAZ L,DREYFUS G.Single-layer learning revisited:a stepwise procedure for building and training a neural network[C]//Neurocomputing:Algorithms,Architectures and Applications.Berlin:Springer-Verlag,1990:41-50.
- [15]PLATT J C,CRISTIANINI N.Large margin DAGs for multiclass classification[M].Cambridge:MIT Press,2000:547-553.
- [16]BENNETT K P,BLUE J A.A support vector machine approach to decision trees[C]//Neural Networks Proceedings.[S.l.]:[s.n.],1998:2396-2401.
- [17]AZIMI-SADJADI M R,ZEKAVAT S A.Cloud classification using support vector machines[C]//Proceedings of the 2000IEEE International Geoscience and Remote Sensing Symposium.[S.l.]:IEEE,2000(2):669-671.
- [18]DIETTERICH T G,BAKIRI G.Solving multiclass learning problems via error-correcting output codes[J].Journal of Artificial Intelligence Research,1995,2(1):263-286.
- [19]FRIEDMAN J H.Another approach to polychotomous classification[R].Stanford:Department of Statistics of Stanford University,1996.
- [20]KEERTHI S S,LIN C.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation,2003,15(7):1667-1689.