测绘科学

2014, v.39;No.198(12) 128-133+137

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

多核多类关联向量机的高分辨率影像目标检测
Multiclass objects detection in high-resolution remote sensing images using MKL_mRVM

李湘眷;孙皓;王洪伟;王彩玲;

摘要(Abstract):

从高分辨率遥感图像数据中准确检测多类目标的任务对于检测速度和模型训练时间提出了较高的要求。文章提出了一种MKL_mRVM方法:该方法采用基于快速边缘似然最大算法直接计算mRVM分类器的决策函数,避免了传统RVM重复计算目标函数Hessian矩阵的过程,并且因为不需要构造一系列两类分类器,缩短了多类模型的训练时间;同时,将多个基础核引入多类模型,训练过程中采用交叉验证方法确定基础核权重,在随机分出的确认集上检验分类器的精度,选取使得分类模型精度最高的值作为权重的优化结果。实验结果表明,该方法能够在保持解的稀疏性的前提下,有效地缩短模型训练时间。

关键词(KeyWords): 高分辨率遥感图像;多类关联向量机;多核学习;多类目标检测

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(41301480,41301382);; 西安石油大学青年科技创新基金项目(2013BS014)

作者(Author): 李湘眷;孙皓;王洪伟;王彩玲;

Email:

DOI: 10.16251/j.cnki.1009-2307.2014.12.032

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享