变异函数模型参数的非线性加权总体最小二乘法Parameter estimation of variogram model by nonlinear weighted total least squares
赵英文;王乐洋;陈晓勇;鲁铁定;
摘要(Abstract):
针对球状模型和指数模型两种变异函数模型线性化后的系数矩阵具有非线性形式,系数矩阵元素含有随机误差等问题,该文使用非线性加权总体最小二乘法估计变异函数模型参数。以高程异常数据为例,利用变异函数值的点对数定权法和系数矩阵中距离值的方差-协方差传播律定权法迭代解算参数,并与最小二乘法,加权最小二乘法和非线性总体最小二乘法进行对比分析。实验结果表明:非线性加权总体最小二乘法能够得到更高精度的变异函数模型参数。
关键词(KeyWords): 变异函数;非线性加权总体最小二乘法;方差-协方差传播律;球状模型;指数模型
基金项目(Foundation): 国家自然科学基金项目(41204003;41161069;41304020;41464001);; 测绘地理信息公益性行业科研专项(201512026);; 江西省自然科学基金项目(20132BAB216004;20151BAB203042);; 江西省教育厅科技项目(GJJ13456;KJLD12077;KJLD14049);; 流域生态与地理环境监测国家测绘地理信息局重点实验室开放基金项目(WE2015005);; 东华理工大学博士科研启动资金项目(DHBK201113);东华理工大学研究生创新专项资金项目(DHYC-2015005);; 江西省研究生创新专项资金项目(YC2015-S266,YC2015-S267);; 测绘地理信息江西省研究生教育创新基地资助项目
作者(Authors): 赵英文;王乐洋;陈晓勇;鲁铁定;
DOI: 10.16251/j.cnki.1009-2307.2017.01.004
参考文献(References):
- [1]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.(WANG Renduo,HU Guangdao.Linear Geostatistics[M].Beijing:Geological Press,1988.)
- [2]李玲,何涛,张武,等.变异函数线性化的统一参数估计方法研究[J].长江大学学报:自然科学版,2010,7(2):127-129.(LI Ling,HE Tao,ZHANG Wu,et al.Study on the unity parameter estimation method of linear variogram[J].Journal of Yangtze University:Nat Sci Edit,2010,7(2):127-129.)
- [3]李明,高星伟,文汉江,等.Kriging方法在GPS水准拟合中的应用[J].测绘科学,2009,34(1):106-107.(LI Ming,GAO Xingwei,WEN Hanjiang,et al.The application of Kriging method in GPS leveling fitting[J].Science of Surveying and Mapping,2009,34(1):106-107.)
- [4]潘家宝,戴吾蛟,章浙涛,等.变异函数模型参数估计的信息熵加权回归法[J].大地测量与地球动力学,2014,34(3):125-128.(PAN Jiabao,DAI Wujiao,ZHANG Zhetao,et al.Parameter estimation of variogram model by using information entropy weighted regression[J].Journal of Geodesy and Geodynamics,2014,34(3):125-128.)
- [5]曾怀恩,黄声享.基于Kriging方法的空间数据插值研究[J].测绘工程,2007,16(5):5-13.(ZENG Huaien,HUANG Shengxiang.Research on spatial data interpolation based on Kriging interpolation[J].Engineering of Surveying and Mapping,2007,16(5):5-13.)
- [6]王乐洋.基于总体最小二乘的大地测量反演理论及应用研究[J].测绘学报,2012,41(4):629.(WANG Leyang.Research on theory and application of total least squares in geodetic inversion[J].Acta Geodaetica et Cartographica Sinica,2012,41(4):629.)
- [7]FELUS Y A,SCHAFFRIN B.A total least-squares approach in two stages for semivariogram modeling of aeromagnetic data[C]//GIS and Spatial Analysis.Beijing:China University of Geosciences,2005:215-221.
- [8]王乐洋,许才军.附有相对权比的总体最小二乘平差[J].武汉大学学报:信息科学版,2011,36(8):887-890.(WANG Leyang,XU Caijun.Total least squares adjustment with weight scaling factor[J].Geomatics and Information Science of Wuhan University,2011,36(8):887-890.)
- [9]XU P,LIU J,SHI C.Total least squares adjustment in partial errors-in-variables models:algorithm and statistical analysis[J].Journal of Geodesy,2012,86(8):661-675.
- [10]王乐洋,许才军.总体最小二乘研究进展[J].武汉大学学报:信息科学版,2013,38(7):850-856.(WANG Leyang,XU Caijun.Progress in total least squares[J].Geomatics and Information Science of Wuhan University,2013,38(7):850-856.)
- [11]王乐洋,于冬冬.病态总体最小二乘问题的虚拟观测解法[J].测绘学报,2014,43(6):575-581.(WANG Leyang,YU Dongdong.Virtul observation method to illposed total least squares problem[J].Acta Geodaetica et Cartographica Sinica,2014,43(6):575-581.)
- [12]胡川,陈义.非线性整体最小平差迭代算法[J].测绘学报,2014,43(7):668-674.(HU Chuan,CHEN Yi.An iterative algorithm for nonlinear total least squares adjustment[J].Acta Geodaetica et Cartographica Sinica,2014,43(7):668-674.)
- [13]王乐洋,于冬冬,吕开云.复数域总体最小二乘平差[J].测绘学报,2015,44(8):866-876.(WANG Leyang,YU Dongdong,LKaiyun.Complex total least squares adjustment[J].Acta Geodaetica et Cartographica Sinica,2015,44(8):866-876.)
- [14]赵英文,王乐洋.变异函数模型参数的加权总体最小二乘回归法[J].大地测量与地球动力学,2015,35(5):801-806.(ZHAO Yingwen,WANG Leyang.Parameter estimation of variogram model by weighted total least squares regression[J].Journal of Geodesy and Geodynamics,2015,35(5):801-806.)
- [15]黎剑.区域GPS高程异常拟合及建模方法研究[D].昆明:昆明理工大学,2013.(LI Jian.Research on regional GPS height anomaly fitting and modeling[D].Kunming:Kunming University of Science and Technology,2013.)