全卷积神经网络的车辆点云目标精细化检测Vehicle detection from LiDAR point cloud using 3D fully convolutional network
马得花;闫宏亮;
摘要(Abstract):
针对无人驾驶技术高速发展中车辆目标的3D检测仍存在局限性的问题,该文提出了一种基于全卷积神经网络的车辆点云三维目标检测框架。进行了深度学习技术在二维图像的目标检测成熟应用的调查,将全卷积神经网络的目标检测扩展到三维点云数据。该算法在KITTI数据集上进行了测试,并与先前基于点云的车辆检测方法进行比较表明算法性能有着显著提高。研究结果可以应用于激光雷达点云实现车辆检测任务,从而可以较好地服务于自动驾驶。
关键词(KeyWords): 车辆检测;目标检测;激光雷达点云;全卷积神经网络;交通测绘
基金项目(Foundation):
作者(Authors): 马得花;闫宏亮;
DOI: 10.16251/j.cnki.1009-2307.2020.03.015
参考文献(References):
- [1] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston,MA,USA:IEEE,2015:3431-3440.
- [2] DOUILLARD B,UNDERWOOD J,KUNTZ N,et al.On the segmentation of 3D LiDAR point clouds [C]//IEEE International Conference on Robotics and Automation.Shanghai,China:IEEE,2011:2798-2805.
- [3] HIMMELSBACH M,HUNDELSHAUSEN F,WUNSCHE H.Fast segmentation of 3D point clouds for ground vehicles [C]//IEEE Intelligent Vehicles Symposium.San Diego,CA,USA:IEEE,2010:560-565.
- [4] MOOSMANN F,PINK O,STILLER C.Segmentation of 3D LiDAR data in non-flat urban environments using a local convexity criterion [C]//IEEE Intelligent Vehicles Symposium.Xi’an,China:IEEE,2009:215-220.
- [5] LAI K,BO L,FOX D.Unsupervised feature learning for 3D scene labeling [C]//IEEE International Conference on Robotics and Automation(ICRA).Hong Kong,China:IEEE,2014:3050-3057.
- [6] TRIEBEL R,SHIN J,SIEGWART R.Segmentation and unsupervised part-based discovery of repetitive objects[C]//Robotics:Science and Systems Conference(RSS).Zaragoza,Spain:MIT Press,2010.
- [7] PAPON J,ABRAMOV A,SCHOELER M,et al.Voxel cloud connectivity segmentation-Supervoxels for point clouds[C]//IEEE Conference on Computer Vision and Pattern Recognition.Portland,OR,USA:IEEE,2013:2027-2034.
- [8] BEHLEY J,STEINHAGE V,CREMERS A.Laser-based segment classification using a mixture of bag-of-words[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Tokyo,Japan:IEEE,2013:4195-4200.
- [9] JOHNSON A,HEBERT M.Using spin images for efficient object recognition in cluttered 3D scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):433-449.
- [10] WANG D,POSNER I,NEWMAN P.What could move?Finding cars,pedestrians and bicyclists in 3D laser data[C]//IEEE International Conference on Robotics and Automation.Saint Paul,MN,USA:IEEE,2012:4038-4044.
- [11] KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Madrid,Spain:IEEE,2018:5750-5757.
- [12] SONG S,XIAO J.Sliding shapes for 3D object detection in depth images[C]//13th European Conference on Computer Vision(ECCV).Zurich,Switzerland:Springer,2014:634-651.
- [13] SHI S,WANG X,LI H.Point RCNN:3D object proposal generation and detection from point cloud[C]//IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,CA:IEEE,2019.
- [14] FAUGERAS O,HEBERT M.The representation,recognition,and locating of 3D objects[J].The International Journal of Robotics Research,1986,5(3):27-52.
- [15] BEHLEY J,STEINHAGE V,CREMERS A.Performance of histogram descriptors for the classification of 3D laser range data in urban environments[C]//IEEE International Conference on Robotics and Automation.Saint Paul,MN,USA:IEEE,2012:6391-6398.
- [16] TEICHMAN A,LEVINSON J,THRUN S.Towards 3D object recognition via classification of arbitrary object tracks[C]//IEEE International Conference on Robotics and Automation.Shanghai,China:IEEE,2011:4034-4041.
- [17] DEUGE M,QUADROS A,HUNG C,et al.Unsupervised feature learning for classification of outdoor 3D scans [C]//Australasian Conference on Robitics and Automation(ACRA).UNSW,Sydney,Australia,2013.
- [18] CHEN X,MA H,WAN J,et al.Multi-view 3D object detection network for autonomous driving[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:6526-6534.
- [19] WANG D,POSNER I.Voting for voting in online point cloud object detection[C]//Robotics:Science and Systems Conference(RSS).Rome,Italy:[s.n.],2015.
- [20] ENGELCKE M,RAO D,WANG D,et al.Vote3deep:Fast object detection in 3D point clouds using efficient convolutional neural networks[C]//IEEE International Conference on Robotics and Automation(ICRA).Singapore,Singapore:IEEE,2017:1355-1361.
- [21] LAHOUD J,GHANEM B.2D-driven 3D object detection in RGB-D images[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:4632-4640.
- [22] QI C,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3D classification and segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:77-85.
- [23] QI C,YI L,SU H,et al.Pointnet++:Deep hierarchical feature learning on point sets in a metric space [C]//Advances in Neural Information Processing Systems(NIPS).Long Beach,CA,USA:Curran Associates,2017:5099-5108.
- [24] QI C,LIU W,WU C,et al.Frustum PointNets for 3D object detection from RGB-D data [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City,UT,USA:IEEE,2018:918-927.
- [25] LIN D,FIDLER S,URTASUN R.Holistic scene under-standing for 3D object detection with RGBD cameras [C]//IEEE International Conference on Computer Vision,Sydney.NSW,Australia:IEEE,2013:1417-1424.
- [26] LI B,ZHANG T,XIA T.Vehicle detection from 3D Lidar using fully convolutional network [C]//Robotics:Science and Systems Conference(RSS).Ann Arbor,Michigan,USA,2016.
- [27] SONG S,XIAO J.Deep Sliding Shapes for A modal 3D object detection in RGB-D images [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE.2016:808-816.
- [28] SOCHER R,HUVAL B,BATH B,et al.Convolutional-recursive deep learning for 3D object classification [C]//26th Annual Conference on Neural Information Processing Systems(NIPS).Lake Tahoe,Spain,3-6 December 2012.
- [29] GUPTA S,GIRSHICK R,ARBELAEZ P,et al.Learning Rich Features from RGB-D images for object detection and segmentation [C]//13th European Conference on Computer Vision(ECCV).Zurich,Switzerland:[s.n.],2014.
- [30] ZHOU Y,TUZEL O.Voxelnet:End-to-end learning for point cloud based 3D object detection [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:4490-4499.
- [31] MATURANA D,SCHERER S.VoxNet:A 3D convolutional neural network for real-time object recognition [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Hamburg,Germany:IEEE,2015:922-928.
- [32] WU Z,SONG S.3D ShapeNets:A deep representation for volumetric shapes [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston,MA,USA:IEEE,2015:1912-1920.
- [33] HUANG L,YANG Y,DEN Y,et al.DenseBox:unifying landmark localization with end to end object detection [Z].Computer Science,2015:1-13.
- [34] REDMON J,GIRSHICK R,FARHADI A.You only look once:unified,real-time object detection [C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:799-808.
- [35] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector [C]//14th European Conference on Computer Vision(ECCV).Amsterdam,Netherlands:[s.n.],2016.
- [36] RETHAGE D,WALD J,STURM J.Fully-convolutional point networks for large-scale point clouds [C]//15th European Conference on Computer Vision(ECCV).Munich,Germany,2018.
- [37] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving?The KITTI vision benchmark suite [C]//IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,USA:IEEE,2012:3354-3361.
- [38] YAN Y,MAO Y,LI B.Second:Sparsely embedded convolutional detection [J].Sensors,2018,18(10):3337.