GRACE卫星的冰川消融与水储量变化探讨Correlation analysis between the glacier melting and regional water storage change based on GRACE satellite
聂琳娟;超能芳;晁定波;
摘要(Abstract):
针对青藏高原地区的冰川消融会影响发源于该地区的长江流域水储量变化这一情况,该文对二者的相关性进行深入研究。基于GRACE卫星2004—2010年重力数据,联合水文模型,利用水量平衡法,计算得到青藏高原地区冰川消融的平均速率为0.369cm/a,表明青藏高原冰川正在以较大速率消融;进而反演建立青藏高原和长江流域两个区域质量变迁的时间序列,计算得到两个区域的平均变化速率分别为-0.095cm/a和0.381cm/a,表明青藏高原地区的质量在以缓慢的速率减少,而长江流域水储量具有逐年增加的趋势且变化速率更大;最后通过分析计算结果,得出青藏高原地区冰川消融对长江流域水储量变化的贡献占其整个水量变化的20%。
关键词(KeyWords): 冰川消融;水储量变化;相关性分析;水量平衡法;GRACE卫星
基金项目(Foundation): 国家自然科学基金项目(41274032,41474018);; 武汉大学地球空间环境与大地测量教育部重点实验室开放基金资助项目(14-02-04)
作者(Authors): 聂琳娟;超能芳;晁定波;
DOI: 10.16251/j.cnki.1009-2307.2016.08.017
参考文献(References):
- [1]ARENDT A A,ECHELMEYER K A,HARRISON W D,et al.Rapid wastage of Alaska Glaciers and their contribution to rising sea level[J].Science,2002,297(5580):382-386.
- [2]DYUREGOV M B,MEIER M F.Twentieth century climate change:evidence from small glaciers[J].Proc Natl Acad Sci U.S.A.,2000,97(4):1406-1441.
- [3]TAPLEY B D,BETTADPUR S,WATKINS M M,et al.The gravity recovery and climate experiment:mission overview and early results[J].Geophys Res Lett,2004,31(9):278-282.
- [4]CHEN J L,WILSON C R,TAPLEY B D,et al.Antarctic regional ice loss rates from GRACE,Earth and Planetary[J].Science Letters,2008,266(1/2):140-148.
- [5]SWENSON S,WAHR J.Methods for inferring regional surface mass anomalies from gravity recovery and climate experiment(GRACE)measurements of time-variable gravity[J].J Geophys Res,2002,107(B9):389-392.
- [6]WAHR J,SWENSON S,ZLOTNICKI V,et al.Timevariable gravity from GRACE:first results[J].Geophy Res Lett,2004,31(11):293-317.
- [7]BETTADPUR S.Level-2 gravity field product user handbook[M].[S.l.]:The GRACE Project,2003.
- [8]CHEN J L,WILSON C R,TAPLEY B D,et al.Low degree gravitational changes from GRACE:validation and interpretation[J].Geophy Res Lett,2004,31(22):359-393.
- [9]CHAMBERS D P,WAHR J,NEREM R S.Preliminary observations of global ocean mass variations with GRACE[J].Geophys Res Lett,2004,31(13):405-407.
- [10]JEKELI C.Alternative methods to smooth the earth’s gravity field[R].Columbus:Department of Geodetic Science and Surveying,Ohio State University,1981.
- [11]JEKELI C.The determination of gravitational potential differences from satellite-to-satellite tracking[J].J Celes Dyn Astron,1999,75(2):85-101.
- [12]SWENSON S,WAHR J.Post-processing removal of correlated errors in GRACE data[J].Geophys Res Lett,2006,33(8):2006.
- [13]FAN Y,VAN DEL DOOL H,MITCHELL K,et al.A51-year reanalysis of the US land-surface hydrology[J].GEWEX News,2003,13(2):6-10.
- [14]RODELL M,HOUSER PR,JAMBOR U,et al.The global land data assimilation system[J].Bull Amer Meteor Soc,2004,85(3):381-394.
- [15]ABDULLA F A,LET TENMAIER D P,WOOD E F,et al.Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River basin[J].J Geophys Res,1996,101(D3):7449-7459.
- [16]LIANG X,LETTENMAIER D P.A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J].J Geophys Res,1994,99(D7):14415-14428.
- [17]LIANG X,WOOD E F,LETTENMAIER D P.Surfaces oil moisture parameterization of the VIC-2Lmodel:evaluation and modifications[J].Global and Planetary Change,1996,13(1):195-206.
- [18]ZENG N,YOON J H,MARIOTTI A,et al.Variability of basin scale terrestrial water storage from a PER water budget method:the Amazon and the Mississippi[J].J Climate,2007,21(2):248-265.
- [19]王正涛,超能芳,姜卫平,等.联合GRACE与TRMM探测阿富汗水储量能力及其发生洪水的可能性[J].武汉大学学报:信息科学版,2016,41(1):58-65.