面向对象的旱区植被遥感精细分类研究Fine vegetation classification of remote sensing in arid areas based on object-oriented method
张文博,孔金玲,杨园园,李彤
摘要(Abstract):
针对旱区植被分类尺度过大、种群无法准确提取的问题,该文提出了面向对象的CFS-RF分类模型,即利用CFS算法对先验样本数据集进行特征优选,结合随机森林构建分类规则,完成分类过程。以新疆阿勒泰为研究区,利用GF-2数据,通过CFS、ReliefF两种不同特征选择方法和J48、SVM、RF 3种分类算法构造出6种面向对象分类方案来实现小尺度植被种群提取。结果表明,经过特征选择,上述分类方案的精度和效率均得到了提升。其中,CFS-RF算法最优,总体精度达到92.41%,Kappa系数为0.90,更适用于旱区植被遥感精细分类。
关键词(KeyWords): 高分影像;旱区植被;特征优选;面向对象分类
基金项目(Foundation): 新疆乌伦古河流域水文地质环境地质调查项目(S17-2-XJ07)
作者(Author): 张文博,孔金玲,杨园园,李彤
DOI: 10.16251/j.cnki.1009-2307.2021.01.018
参考文献(References):
- [1]SCHEIEWE J,TUFTE L,EHLERS M.Potential and problems of multi-scale segmentation methods in remote sensing[J].Geo-BIT/GIS,2001,6:34-39.
- [2]王永吉,孟庆岩,杨健,等.一种基于特征选择的面向对象遥感影像分类方法[J].科学技术与工程,2016,16(32):107-113.(WANG Yongji,MENG Qingyan,YANG Jian,et al.Object based remote sensing image classification based on feature selection method[J].Science Technology and Engineering,2016,16(32):107-113.)
- [3]张秀英,冯学智,江洪.面向对象分类的特征空间优化[J].遥感学报,2009,13(4):664-669.(ZHANG Xiuying,FENG Xuezhi,JIANG Hong.Feature set optimization in object-oriented methodology[J].Journal of Remote Sensing,2009,13(4):664-669.)
- [4]李冰,卢小平,李新社,等.特征优选的GF-2影像湿地地表覆盖要素提取[J].测绘与空间地理信息,2018,41(9):49-52.(LI Bing,LU Xiaoping,LI Xinshe,et al.Extraction of gf-2image surface cover elements with feature optimization[J].Mapping and Spatial Geographic Information,2008,41(9):49-52.)
- [5]AVRIM L.BLUM,LANGLEY P.Selection of relevant features and examples in machine learning[J].Artificial Intelligence,1997,97(1):245-271.
- [6]肖艳,姜琦刚,王斌,等.基于ReliefF和PSO混合特征选择的面向对象土地利用分类[J].农业工程学报,2016,32(4):211-216.(XIAO Yan,JIANG Qigang,WANGBin,et al.Object-oriented land use classification based on mixed feature selection of ReliefF and PSO[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(4):211-216.
- [7]HALL M A.Correlation-based feature subset selection for machine learning[EB/OL].[2019-10-09]https:∥www.docin.com/p-896976522.html.
- [8]温小乐,钟奥,胡秀娟.基于随机森林特征选择的城市绿化乔木树种分类[J].地球信息科学学报,2018,20(12):1777-1786.(WEN Xiaole,ZHONG Ao,HUXiujuan.Classification of urban greening trees based on random forest feature selection[J].Journal of GeoInformation Science,2008,20(12):1777-1786.)
- [9]刘建平,赵英时.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院研究生院学报,1999,16(2):153-161.(LIU Jianping,ZHAO Yingshi.Research on best band selection method for hyperspectral remote sensing data interpretation[J].Journal of Graduate School,Academia Sinica,1999,16(2):153-161.)
- [10]黄辉.基于ReliefF的多标签特征选择算法研究[D].广州:广东工业大学,2018.(HUANG Hui.Research on multi-label feature selection algorithm based on ReliefF[D].Guangzhou:Guangdong University of Technology,2018.)
- [11]KONONENKO I.Estimating attributes:analysis and extensions of RELIEF[J].Proceedings of the European Conference on Machine Learning on Machine Learning.[S.l.]:IEEE,1994:171-182.
- [12]刘晓宇.C4.5算法的一种改进及其应用[D].青岛:中国海洋大学,2013.(LIU Xiaoyu.An improvement of C4.5algorithm and its application[D].Qingdao:Ocean University of China,2013.)
- [13]单治彬,孔金玲,张永庭,等.面向对象的特色农作物种植遥感调查方法研究[J].地球信息科学学报,2018,20(10):1509-1519.(SHAN Zhibin,KONG Jinling,ZHANGYongting,et al.Remote sensing investigation method of object-oriented crops with special characteristics[J].Journal of Geo-Information Science,2008,20(10):1509-1519.)
- [14]BREIMAN L.Random forests[J].Machine Learning,2001,45(1):1.
- [15]戴莉莉,李海涛,顾海燕,等.特征优选下的遥感影像面向对象分类规则构建[J].测绘科学,2019,44(2):26-32.(DAI Lili,LI Haitao,GU Haiyan,et al.Construction of object oriented classification rules for remote sensing images under feature optimization[J].Science of Surveying and Mapping,2019,44(2):26-32.)