利用蚁群遗传算法改进高程异常拟合模型Improved elevation anomaly fitting model based on ant colony genetic algorithm
蒲伦;唐诗华;刘银涛;黄昶程;唐宏;
摘要(Abstract):
针对多面函数在拟合高程异常中难以选取中心节点及光滑因子的问题,该文提出了蚁群-遗传算法改进高程异常拟合模型的方法。为拟合模型构建提供可靠的参数,使选择的中心节点更加合理,加入蚁群算法能够快速获取地形复杂区域的特征点。光滑因子是多面函数拟合法的重要参数,参数值影响了拟合模型精度的高低。采用了遗传算法优化光滑因子,将光滑因子作为种群的染色体进行遗传运算,求得了拟合模型的光滑因子最优值为0.452。利用蚁群-遗传算法改进后的多面函数构建的拟合模型精度为8.6mm,比传统多面函数法拟合结果精度提高了48%。实验研究表明,蚁群-遗传算法改进的多面函数在很大程度上提高了拟合模型的精度,充分验证了改进方法有效可行,为特殊地形的高程拟合提供了重要的参考依据。
关键词(KeyWords): 高程异常;蚁群算法;遗传算法;多面函数;中心节点;光滑因子
基金项目(Foundation): 广西空间信息与测绘重点实验室基金项目(15-140-07-05,16-380-25-13,16-380-25-25);; 广西自然科学基金项目(2018GXNSFAA281279);; 广西高校中青年教师基础能力提升项目(KY2016YB823)
作者(Authors): 蒲伦;唐诗华;刘银涛;黄昶程;唐宏;
DOI: 10.16251/j.cnki.1009-2307.2019.07.008
参考文献(References):
- [1]段文义,许烨璋,王灵锋,等.一种基于CGCS2000框架的单椭球七参数转换法[J].测绘科学,2017,42(6):50-54.(DUAN Wenyi,XU Yezhang,WANG Lingfeng,et al.A seven-parameter model based on single ellipsoid of CGCS2000frame[J].Science of Surveying and Mapping,2017,42(6):50-54.)
- [2]刘亚彬,郑南山,张旭,等.GPS高程拟合的加权总体最小二乘抗差估计[J].大地测量与地球动力学,2016,36(1):30-34.(LIU Yabin,ZHENG Nanshan,ZHANGXu,et al.Robust weighted total least squares estimation for GPS leveling fitting[J].Journal of Geodesy and Geodynamics,2016,36(1):30-34.)
- [3]杨帆,于奇.遗传小波神经网络的GPS高程拟合模型[J].导航定位学报,2017,5(2):131-134.(YANG Fan,YU Qi.GPS height fitting model based on genetic wavelet neural network[J].Journal of Navigation and Positioning,2017,5(2):131-134.)
- [4]李俊学.含稳健权的遗传神经网络在GPS高程拟合中的应用[D].南昌:东华理工大学,2015.(LI Junxue.With robust weight of genetic algorithm and neural network in application of GPS elevation fitting[D].Nanchang:East China University of Technology,2015.)
- [5]张兴福,刘成.综合EGM2008模型和SRTM/DTM2006.0剩余地形模型的GPS高程转换方法[J].测绘学报,2012(1):25-32.(ZHANG Xingfu,LIU Cheng.The approach of GPS height transformation based on EGM2008model and SRTM/DTM2006.0residual terrain model[J].Journal of Surveying and Mapping,2012(1):25-32.)
- [6]张怀亮,李晓莉,朱赛虎.改进多面函数拟合跨带区域高程异常的研究[J].测绘科学,2016,41(3):132-137.(ZHANG Huailiang,LI Xiaoli,ZHU Saihu.Study on improving the multi-faceted function to fit the anomaly in the cross-belt region[J].Science of Surveying and Mapping,2016,41(3):132-137.)
- [7]徐南,严朝霞,马符讯.基于遗传算法的多面函数GPS高程拟合模型[J].工程勘察,2013,41(11):50-52.(XU Nan,YAN Zhaoxia,MA Fuxun.Multi-surface function model of GPS height fitting based on genetic algorithm[J].Geotechnical Investigation&Surveying,2013,41(11):50-52.)
- [8]周长志,孙佳龙,郭淑艳.基于移动-多面函数的高程异常拟合方法[J].测绘通报,2016(12):25-27.(ZHOUChangzhi,SUN Jialong,GUO Shuyan.Height anomaly fitting method based on mobile-polyhedral function[J].Bulletin of Surveying and Mapping,2016(12):25-27.)
- [9]杨娟,陶叶青.GPS高程异常拟合的稳健总体最小二乘算法[J].大地测量与地球动力学,2014,34(5):130-133.(YANG Juan,TAO Yeqing.A solution of GPSelevation anomaly fitting base on robust total least squares[J].Journal of Geodesy and Geodynamics,2014,34(5):130-133.)
- [10]喻环.改进蚁群算法在机器人路径规划上的应用研究[D].合肥:安徽大学,2017.(YU Huan.Improved ant colony algorithm in the robot path planning application[D].Hefei:Anhui University,2017.)
- [11]莫致良,杜震洪,张丰,等.基于可扩展多目标蚁群算法的土地利用优化配置[J].浙江大学学报(理学版),2017,44(6):649-659.(MO Zhiliang,DU Zhenhong,ZHANG Feng,et al.Optimization of land use based on extensible multi-objective ant colony algorithm[J].Journal of Zhejiang University(Science Edition),2017,44(6):649-659.)
- [12]汪定伟,王俊伟,王洪峰.智能优化方法[M].北京:高等教育出版社,2007:20-28.(WANG Dingwei,WANGJunwei,WANG Hongfeng.Intelligent optimization methods[M].Beijing:Higher Education Press,2007:20-28.)
- [13]王立国,魏芳洁.结合遗传算法和蚁群算法的高光谱图像波段选择[J].中国图象图形学报,2013,18(2):235-242.(WANG Liguo,WEI Fangjie.Hyperspectral image band selection based on genetic algorithm and ant colony algorithm[J].Journal of Image and Graphics,2013,18(2):235-242.)
- [14]闫凯,李爱光,郭健.基于混合算法的单配送中心路径优化方法[J].测绘科学技术学报,2016,33(6):650-653.(YAN Kai,LI Aiguang,GUO Jian.Based on hybrid algorithm single distribution center path optimization method[J].Journal of Surveying and Mapping Science and Technology,2016,33(6):650-653.)
- [15]李冬妮,贾晓宇,陈琳,等.基于蚁群算法和遗传规划的跨单元调度方法[J].北京理工大学学报,2017,37(7):704-710.(LI Dongni,JIA Xiaoyu,CHEN Lin,et al.Cross-cell scheduling method based on ant colony algorithm and genetic programming[J].Journal of Beijing Institute of Technology,2017,37(7):704-710.)