路网距离约束的GTWR模型应用——以北京市房价为例Application of GTWR model constraint of road network distance——a case study of housing price in Beijing City
王梦晗;刘纪平;王勇;罗安;徐胜华;
摘要(Abstract):
针对传统地理加权回归方法无法解决时空非平稳性的问题,该文提出了一种路网距离约束的时空地理加权回归方法。引入时间特性,进一步把握了不同因子在时空维度影响的分异性;以路网距离度量约束,提高模型解释力。以北京市城6区1980—2015年的1 632个住宅小区特征价格数据为例,通过与直线距离约束的常规地理加权回归方法等进行比较,采用各模型的AIC与拟合优度等指标对模型置信水平高低进行评价。实验结果表明,路网距离约束的地理加权回归模型不仅能够提高模型的拟合精度,还能更好地揭示房价在时间与空间方面的变化规律。
关键词(KeyWords): GTWR模型;路网距离;时空非平稳性;北京房价
基金项目(Foundation):
作者(Authors): 王梦晗;刘纪平;王勇;罗安;徐胜华;
DOI: 10.16251/j.cnki.1009-2307.2018.04.022
参考文献(References):
- [1]FOTHERINGHAM A S,CHARLON M,BRUNSDON C.Measuring spatial relationships with geographically weighted regression[J].Development in Spatial Analysis,1996,17(7):27-35.
- [2]LESAGE J P.A spatial econometric examination of China’s economic growth[J].Geographic Information Sciences,1999,5(2):143-153.
- [3]BRUNSDON C,FOTHERINGHAM A S,CHARLON M.Geographically weighted regression as a statistical model[C]//Proceedings of the 40th Annual Meeting of the Western Regional Science Association.Palm Springs:[s.n.],2001:25-28.
- [4]KOPPE J,RIETKERK M,LANGEVELDE F.Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems[J].The American Naturalist,2002,159(2):209-212.
- [5]PACE R K,BARRY R,SIRMANS C F.Spatial statistics and real estate[J].Journal of Real Estate Finance&Economics,1998,17(1):5-13.
- [6]HUANG B,WU B,BARRY M.Geographically and temporally weighted regression for modeling spatiotemporal variation in house prices[J].International Journal of Geographical Information Science,2010,24(3):383-401.
- [7]肖宏伟,易丹辉.基于时空地理加权回归模型的中国碳排放驱动因素实证研究[J].统计与信息论坛,2014,29(2):83-89.(XIAO Hongwei,YI Danhui.Empirical study of carbon emissions drivers based on geographically time weighted regression model[J].Statistics&Information Forum,2014,29(2):83-89.)
- [8]玄海燕,李帅峰.时空加权回归模型的非平稳性检验[J].甘肃科学学报,2012,24(2):1-4.(XUAN Haiyan,LI Shuaifeng.The nonstationarity tests of geographically and temporally weighted regression model[J].Journal of Gansu Sciences,2012,24(2):1-4.)
- [9]覃文忠.地理加权回归基本理论与应用研究[D].上海:同济大学,2007.(TAN Wenzhong.The basic theoretics and application research on geographically weighted regression[D].Shanghai:Tongji University,2007.)
- [10]谷兴,周丽青.基于地理加权回归的武汉市住宅房价空间分异及其影响因素分析[J].国土与自然资源研究,2015(3):63-68.(GU Xing,ZHOU Liqing.Spatial differentiation and influencing factors of Wuhan’s housing price based on GWR model[J].Territiry&Natural Resources Study,2015(3):63-68.)
- [11]LU B,CHARLTON M,HARRIS P,et al.Geographically weighted regression with a non-euclidean distance metric:a case study using hedonic house price data[J].International Journal of Geographical Information Science,2014,28(4):660-681.
- [12]APPARICIO P,ABDELMAJID M,RIVA M,et al.Comparing alternative approaches to measuring the geographical accessibility of urban health services:distance types and aggregation-error issues[J].International Journal of Health Geographics,2008,7(4):622-624.
- [13]王新刚,孔云峰.基于时空窗口改进的时空加权回归分析:以湖北省黄石市住房价格为例[J].地理科学,2015,35(5):615-621.(WANG Xingang,KONG Yunfeng.Spatio-temporal weighted regression analysis based on improved spatio-temporal window:a case study of housing prices in Huangshi,Hubei Province[J].Geographical Science,2015,35(5):615-621.)
- [14]张金牡,刘彪,吴波,等.应用改进的时空地理加权模型分析城市住宅价格变化[J].东华理工大学学报(自然科学版),2010,33(1):53-59.(ZHANG Jinmu,LIU Biao,WU Bo,et al.Analysis of urban house price variations by improved geographically and temporally weighted model[J].Journal of East China Institute of Technology,2010,33(1):53-59.)