城市天空可视因子对地表热环境的影响分析Analysis of the influence of the urban building sky view factor on land surface thermal environment
陈强,程倩豪,陈云浩,李康宁,靖常峰
摘要(Abstract):
针对城市热岛效应的各类影响因素,该文主要关注城市三维形态与城市热环境的关系,并研究这种关系因建筑高度、密度、季节而变化的原因。作为重要的城市结构参数,天空可视因子能够较好地描述建筑物的三维形态,并可以表征有效太阳辐射吸收强度。因此,该文结合建筑物高度数据集和半球模型计算天空可视因子,并利用Landsat-8热红外波段和辐射传输模型反演地表温度,然后分析了天空可视因子与地表温度在不同季节的相关性。选择地表异质性较高的北京核心建成区作为研究区,并按照不同建筑高度和密度选择4个实验区。实验结果表明,天空可视因子与地表温度的关系存在季节差异,冬季两者的相关性更强。通过对4个实验区的定量分析可知,实验区a中天空可视因子与地表温度夏季是正相关,冬季是非线性关系;实验区b和c中是两者的关系正相关;而实验区d中无明显相关趋势。所以,建筑物的高度与密度对天空可视因子与地表温度的关系有显著影响,并且这种关系随季节变化而不同。
关键词(KeyWords): 天空可视因子;地表温度;城市三维表面;季节性变化
基金项目(Foundation): 北京市教委科研一般性项目(KM20190016006);; 国家自然科学基金项目(41801235,41771412)
作者(Author): 陈强,程倩豪,陈云浩,李康宁,靖常峰
DOI: 10.16251/j.cnki.1009-2307.2021.08.021
参考文献(References):
- [1] 杨柳青,陈雯,吴加伟,等.适应气候变化的空间规划研究进展:内容和方法[J].国际城市规划,2020,35(4):96-100.(YANG Liuqing,CHEN Wen,WU Jiawei,et al.Spatial planning adapting to climate change:progress in the content and methodology[J].Urban Planning International,2020,35(4):96-100.)
- [2] WANG Z H,UPRETI R.A scenario analysis of thermal environmental changes induced by urban growth in Colorado river basin,USA[J].Landscape and Urban Planning,2019,181:125-138.
- [3] 焦毅蒙,赵娜,岳天祥,等.城市化对北京市极端气候的影响研究[J].地理研究,2020,39(2):461-472.(JIAO Yimeng,ZHAO Na,YUE Tianxiang,et al.The effect of urbanization on extreme climate events in Beijing[J].Geographical Research,2020,39(2):461-472.)
- [4] 孟凡超,任国玉,郭军,等.城市热岛效应对天津市居住建筑供暖和制冷负荷的影响[J].地理科学进展,2020,39(8):1296-1307.(MENG Fanchao,REN Guoyu,GUO Jun,et al.Impact of urban heat island effect on the heating and cooling loads of residential buildings in Tianjin city,China[J].Progress in Geography,2020,39(8):1296-1307.)
- [5] 姚远,陈曦,钱静.城市地表热环境研究进展[J].生态学报,2018,38(3):1134-1147.(YAO Yuan,CHEN Xi,QIAN Jing.Research progress on the thermal environment of the urban surfaces[J].Acta Ecologica Sinica,2018,38(3):1134-1147.)
- [6] 周宏轩,陶贵鑫,炎欣烨,等.绿量的城市热环境效应研究现状与展望[J].应用生态学报,2020,31(8):2804-2816.(ZHOU Hongxuan,TAO Guixin,YAN Xinye,et al.A review of research on the urban thermal environment effects of green quantity[J].Chinese Journal of Applied Ecology,2020,31(8):2804-2816.)
- [7] LI Kun,LIU Xi,ZHOU Jie.Impact of environmental characteristics in urban green spaces on outdoor thermal environment:a case study of Wuhan city,China[J].Indoor and Built Environment,2019,28(9):1217-1236.
- [8] MOSTOFA T,MANTEGHI G.Inflential factors of water body to enhance the urban cooling islands(UCIs):a review[J].International Transaction Journal of Engineering Management & Applied Sciences & Technologies,2020,11(2):1-12.
- [9] YANG L,LIU X D,QIAN F.Research on water thermal effect on surrounding environment in summer[J].Energy and Buildings,2020,207:109613.
- [10] 苏俊如,吕芳,杨俊.城市建筑水平特征对城市热环境效应的影响:以大连市中山区为例[J].测绘通报,2018(8):111-114.(SU Junru,LYU Fang,YANG Jun.The impact of urban architectural horizontal characteristics on urban thermal environment:a case study of Zhongshan district,Dalian[J].Bulletin of Surveying and Mapping,2018(8):111-114.)
- [11] 于琛,胡德勇,曹诗颂,等.近30年北京市ISP-LST空间特征及其变化[J].地理研究,2019,38(9):2346-2356.(YU Chen,HU Deyong,CAO Shisong,et al.The spatial characteristics and changes of ISP-LST of Beijing in recent 30 years[J].Geographical Research,2019,38(9):2346-2356.)
- [12] ZHENG Z,ZHOU W Q,YAN J L,et al.The higher,the cooler?Effects of building height on land surface temperatures in residential areas of Beijing[J].Physics and Chemistry of the Earth,2019,110:149-156.
- [13] YIN C H,YUAN M,LU Y P,et al.Effects of urban form on the urban heat island effect based on spatial regression model[J].Science of the Total Environment,2018,634:696-704.
- [14] WATSON I D,JOHNSON G T.Graphical estimation of sky view-factors in urban environments[J].Journal of Climatology,1987,7(2):193-197.
- [15] QAID A,LAMIT H B,OSSEN D R,et al.Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons[J].Theoretical and Applied Climatology,2018,131(3/4):1083-1100.
- [16] GARCíA-SANTOS V,CUXART J,MARTíNEZ-VILLAGRASA D,et al.Comparison of three methods for estimating land surface temperature from Landsat8-TIRS sensor data[J].Remote Sensing,2018,10(9):1450.