基于地铁的乘客出行群组模式发现与可视化Discovery and visualization of passenger travel group patterns based on subway systems
何伟,张彤,黄靖
摘要(Abstract):
拥挤现象是困扰公共交通出行者和管理者的一个重要问题。公共交通出行者需要了解公共交通载具的负载情况从而尽可能地避免拥挤,公共交通管理者需要了解公共交通的客运情况来指挥调度。为了服务于以上需求,该文参考自由轨迹的群组定义方式定义了一种在公共交通系统中与拥挤现象强相关的群组模式,并重点给出了包含原始群组提取和融合原始群组在内的群组模式挖掘算法。基于提取到的群组进一步设计了群组的可视化方法。最后基于深圳地铁智能卡数据对地铁群组进行了模式挖掘与可视化。基于提取到的群组,乘客可以错峰出行,提高出行舒适度;交通规划者可以对拥挤易发生的路段进行调度。
关键词(KeyWords): 智能卡数据;出行链;群组模式;可视化
基金项目(Foundation):
作者(Author): 何伟,张彤,黄靖
DOI: 10.16251/j.cnki.1009-2307.2021.08.022
参考文献(References):
- [1] AGARD B,MORENCY C,TREPANIER M.Mining public transport user behaviour from smart card data[J].IFAC Proceedings Volumes,2006,39(3):399-404.
- [2] DEVILLAINE F,MUNIZAGA M,TREPANIER M.Detection of activities of public transport users by analyzing smart card data[J].Transportation Research Record Journal of the Transportation Research Board,2012(2276):48.
- [3] 孙世超,庄斌,黄伟.基于机器学习的公交卡数据中通勤人群辨识方法[J].交通工程,2017(1):58.(SUN Shichao,ZHUANG Bin,HUANG Wei.Method for identifying commuting crowd in bus card data based on machine learning[J].Journal of Transportation Engineering,2017(1):58.)
- [4] PELLETIER M P,TRéPANIER M,MORENCY C.Smart card data use in public transit:a literature review[J].Transportation Research Part C Emerging Technologies,2011,19(4):557-568.
- [5] ZHANG F,ZHAO J,TIAN C,et al.Spatiotemporal segmentation of metro trips using smart card data[J].IEEE Transactions on Vehicular Technology,2016,65(3):1137-1149.
- [6] SEABORN C,ATTANUCCI J,WILSON N H M.Analyzing multimodal public transport journeys in London with smart card fare payment data[J].Transportation Research Record Journal of the Transportation Research Board,2009(2121):55.
- [7] GUDMUNDSSON J,VAN KREVERD M.Computing longest duration flocks in trajectory data[C]//Proceedings of 14th ACM International Symposium on Geographic Information Systems.Arlington:ACM,2006.
- [8] GUDMUNDSSON J,KREVELD M V,SPECKMANN B.Efficient detection of patterns in 2D trajectories of moving points[J].GeoInformatica,2007,11(2):195-215.
- [9] JEUNG Hoyoung,YIU Manlung,ZHOU Xiaofang,et al.Discovery of convoys in trajectory databases[J].Proc VLDB Endow 1,2008,1:1068-1080.
- [10] 吉根林,孙鸿艳,赵斌.时空轨迹群体运动模式挖掘研究进展[J].南京航空航天大学学报,2016(5):615-624.(JI Genlin,SUN Hongyan,ZHAO Bin.Research progress in group moving patterns mining of spatio-temporal trajectories[J].Journal of Nanjing University of Aeronautics & Astronautics,2016(5):615-624.)
- [11] 杨婷婷.基于出租车GPS轨迹数据的实时交通状态获取和现有实时路况系统评估[D].上海:华东师范大学,2016.(YANG Tingting.The real-time traffic status acquirement and system assessment based on taxis GPS trajectory data[D].Shanghai:East China Normal University,2016.)
- [12] DI L G,SBODIO M,CALABRESE F,et al.AllAbroad:isual exploration of cellphone mobility data to optimise public transport[J].IEEE Trans Vis Comput Graph,2016(22):1036-1050.
- [13] ZHOU Z,YU J,GUO Z,et al.Visual exploration of urban functions via spatio-temporal taxi OD data[J].J Vis Lang Comput,2018(48):169-177.
- [14] KIM S,JEONG S,WOO I,et al.Data flow analysis and visualization for spatiotemporal statistical data without trajectory information[J].IEEE Trans Vis Comput Graph,2017(24):1287-1300.
- [15] ZENG W,FU C W,ARISONA S,et al.Visualizing the relationship between human mobility and points of interest[J].IEEE Trans Intell Transp Syst,2017(18):2271-2284.
- [16] ZHANG T,WANG J,CUI C,et al.Integrating geovisual analytics with machine learning for human mobility pattern discovery[J].ISPRS International Journal of Geo-Information,2019,8(10):434.