输电线走廊点云数据抽稀算法适用性分析Comparative analysis of thinning algorithm of point clouds in transmission line corridor
王和平;张昌赛;刘伟东;阙波;邹彪;
摘要(Abstract):
针对机载LiDAR设备获取的输电线走廊点云数据量庞大,为后续的数据处理带来不便的问题,该文采用随机抽稀、空间抽稀和体素分割抽稀3种点云抽稀算法进行比较和分析,以期选择合适的算法对点云数据进行压缩和消除冗余数据,主要从点云抽稀的质量、简度和速度3方面对4组输电线走廊点云数据进行抽稀实验。研究表明:系统(随机)抽稀方法点云抽稀不能有效保持导线形态完整性和连续性;空间距离抽稀方法的处理效果最佳;在相同抽稀率下,体素分割抽稀速率最快;系统抽稀算法,用时均少于19 s;空间抽稀方法用时最长为447 s,抽稀时间效率相对较低。
关键词(KeyWords): 激光点云;点云抽稀;机载LiDAR;点云精度
基金项目(Foundation): 国家电网公司科技项目(52110417000Z)
作者(Authors): 王和平;张昌赛;刘伟东;阙波;邹彪;
DOI: 10.16251/j.cnki.1009-2307.2020.09.023
参考文献(References):
- [1] 彭向阳,刘正军,麦晓明,等.无人机电力线路安全巡检系统及关键技术[J].遥感信息,2015,30(1):51-57.(PENG Xiangyang,LIU Zhengjun,MAI Xiaoming.et al.A transmission line inspection system based on remote sensing:system and its key technologies[J].Remote Sensing Information,2015,30(1):51-57.)
- [2] 刘正军.彭向阳,郭小龙,等.大型无人机电力线路巡检数据采集与处理技术[M].北京:中国电力出版社,2015:12(LIU Zhengjun,PENG Xiangyang,GUO Xiaolong,et al.Large-scale UAV power line inspection data acquisition and processing technology[M].Beijing:China Electric Power Press,2015:12.)
- [3] 徐景中,万幼川,张圣望.LiDAR地面点云的简化方法研究[J].测绘信息与工程,2008,33(1):32-34.(XU Jingzhong,WAN Youchuan,ZHANG Shengwang.On simplification method for LiDAR ground points cloud[J].Journal of Geomatics,2008,33(1):32-34.)
- [4] 李兰兰.基于近邻传播聚类的点云简化研究[D].杭州:浙江工业大学,2010.(LI Lanlan.Point cloud simplification based on affinity propagation clustering[D].Hangzhou:Zhejiang University of Technology,2010.)
- [5] 陈西江,章光,花向红.于法向量夹角信息熵的点云简化算法[J].中国激光,2015,42(8):336-344.(CHEN Xijiang,ZHANG Guang,HUA Xianghong.Point cloud simplification based on the information entropy of normal vector angle[J].Chinese Journal of Lasers,2015,42(8):336-344.)
- [6] 刘春,吴杭彬.基于平面不规则三角网的DEM数据压缩与质量分析[J].中国图象图形学报,2007,12(5):836-840.(LIU Chun,WU Hangbin.Data compress of DEM based on plane triangulation irregular network[J].Journal of Image and Graphics,2007,12(5):836-840.)
- [7] 王成福,耿国华,胡佳贝,等.一种特征感知的三维点云简化算法[J].激光与光电子学进展,2019,56(11):138-145.(WANG Chengfu,GENG Guohua,HU Jiabei,et al.Feature-aware three-dimensional point cloud simplification algorithm[J].Laser & Optoelectronics Progress,2019,56(11):138-145.
- [8] 陆建华,刘闯,吕志才.最优邻域二次误差曲面的点云简化算法[J].测绘通报,2018(12):101-104,113.(LU Jianhua LIU Chuang,LYU Zhicai.Point cloud simplification algorithm of quadric error based on the optimal neighborhood[J].Bulletin of Surveying and Mapping,2018(12):101-104,113.)
- [9] 肖巍峰,田鑫,李朝奎,等.利用连续变形技术的三维点云简化方法[J].遥感信息,2018,33(5):9-14.(XIAO Weifeng TIAN Xin,LI Chaokui,et al.3D point cloud simplification based on morphing technology[J].Remote Sensing Information,2018,33(5):9-14.)
- [10] 袁华,庞建铿,莫建文.基于体素化网格下采样的点云简化算法研究[J].电视技术,2015,39(17):43-47.(YUAN Hua,PANG Jiankeng,MO Jianwen.Research on simplification algorithm of point cloud based on voxel grid[J].Video Engineering,2015,39(17):43-47.)
- [11] 马振国.利用K-dtree索引实现曲率自适应点云简化算法[J].测绘科学,2010,35(6):67-69.(MA Zhenguo.A point cloud aimplification algorithm based on K-dtree and curvature sampling[J].Science of Surveying and Mapping,2010,35(6):67-69.)
- [12] 黄文明,肖朝霞,温佩芝,等.保留边界的点云简化方法[J].计算机应用,2010,30(2):348-350,384.(HUANG Wenming,XIAO Chaoxia,WEN Peizhi,et al.Point cloud simplification with boundary points reservation[J].Journal of Computer Applications,2010,30(2):348-350,384.)
- [13] 车翔玖,刘杨,赵义武,等.基于k-邻域密度的离散点云简化算法与实现[J].吉林大学学报(理学版),2009,47(5):994-998.(CHE Xiangjiu,LIU Yang,ZHAO Yiwu,et al.Simplification and implementation of scattered point cloud based on the density in k-nearest neighbors[J].Journal of Jilin University(Science Edition),2009,47(5):994-998.)
- [14]钱金菊,张昌赛,王柯,等.机载LiDAR点云数据抽稀算法研究述评[J].测绘通报,2017(S1):33-35.(QIAN Jinju ZHANG Changsai,WANG Ke,et al.Research review on thinning algorithm of airborne LiDAR point cloud data[J].Bulletin of Surveying and Mapping,2017(S1):33-35.)
- [15]KAMMERL J,BLODOW N,RUSU R B,et al.Realtime compression of point cloud streams[C]∥IEEE International Conference on Robotics and Automation.Saint Paul,USA:IEEE,2012:778-785.
- [16]王鹏杰,潘志庚,徐明亮,等.基于局部最小生成树的点模型快速无损压缩算法[J].计算机研究与发展,2011,48(7):1263-1268.(WANG Pengjie,PAN Zhigeng,XU Mingliang,et al. A fast and lossless compression algorithm for point-based models based on local minimal spanning tree[J].Journal of Computer Research and Development,2011,48(7):1263-1268.)
- [17]黄源,达飞鹏.基于改进八叉树的三维点云压缩算法[J].光学学报,2017,37(12):1210003.(HUNAG Yuan,DA Feipeng.Three-dimensional point cloud compression algorithm based on improved octree[J].Acta Optica Sinica,2017,37(12):1210003.)