农村路面多类型病害检测方法研究Research on the detection method of multi-type diseases on rural pavement
朱洪波,张在岩,秦育罗,宋伟东,张晋赫
摘要(Abstract):
针对实际采集场景下路面影像中病害受背景纹理噪声影响程度大、病害边缘模糊导致分割不准确的问题,该文提出了一种基于Res_UNet和全连接条件随机场的路面病害像素级精准检测方法:(1)对路面影像进行灰度化、中值滤波和自适应直方图均衡化等预处理;(2)根据辽宁省多年份实测路面影像制作大规模、多场景、像素级路面病害数据集,然后融合注意力机制及Dense Crf优化Res_UNet网络结构完成模型训练;并引入损失函数dice loss增强了该方法对细小病害提取的能力;(3)将深度卷积神经网络分割后的路面病害特征图导入全连接条件随机场,对预测的路面病害结果进行轮廓优化,其检测结果为获取路面裂缝宽度,进而评估路面病害等级奠定了基础。该文选用2 000张辽宁省农村公路实测路面影像,并以人工判读作为标准,分别从准确率、召回率和精确率3个方面验证本文方法、分水岭算法和Res_UNet模型在实际工作环境下的农村公路路面病害分割性能。结果表明,方法的准确率为91.3%,召回率为87.8%,精确率为87.5%,路面病害轮廓提取更加精细,能够适应于复杂路面条件下病害高鲁棒分割。
关键词(KeyWords): 路面影像;病害分割;深度学习;全连接条件随机场;Res_Unet
基金项目(Foundation): 国家自然科学基金项目(42071343);; 宿迁市指导性科技计划项目(Z2020138);; 2020年度黑龙江省省属高等学校基本科研业务费项目(2020-KYYWF-0690)
作者(Author): 朱洪波,张在岩,秦育罗,宋伟东,张晋赫
DOI: 10.16251/j.cnki.1009-2307.2022.09.021
参考文献(References):
- [1] 黎蔚,高璐.基于改进的分水岭算法的路面裂缝检测[J].计算机工程与应用,2013,49(20):263-266.(LI Wei,GAO Lu.Pavement crack detection based on improved watershed algorithm[J].Computer Engineering and Applications,2013,49(20):263-266.)
- [2] 靳华中,万方,叶志伟.结合路面深度影像梯度方向直方图和分水岭算法的裂缝检测[J].华中师范大学学报(自然科学版),2017,51(5):715-722.(JIN Huazhong,WAN Fang,YE Zhiwei.Pavement crack detection fused HOG and watershed algorithm of range image[J].Journal of Central China Normal University(Natural Sciences),2017,51(5):715-722.)
- [3] 张珂,冯晓晗,郭玉荣,等.图像分类的深度卷积神经网络模型综述[J].中国图象图形学报,2021,26(10):2305-2325.(ZHANG Ke,FENG Xiaohan,GUO Yurong,et al.Overview of deep convolutional neural networks for image classification[J].Journal of Image and Graphics,2021,26(10):2305-2325.)
- [4] KHERADMANDI N,MEHRANFAR V.A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J].Construction and Building Materials,2022,321:126162.
- [5] HUANG Guixin,HUANG Sheng,HUANGFU Luwen,et al.Weakly supervised patch label inference network with image pyramid for pavement diseases recognition in the wild[C]//ICASSP 2021 IEEE International Conference on Acoustics,Speech and Signal Processing.Toronto,ON,Canada:IEEE,2021:7978-7982.
- [6] GUO Wentong,FANG Hongyuan,WANG Niannian.New method of airport pavement health inspection based on MobileNet-SSD and mask R-CNN[J].Journal of Physics:Conference Series,2021,1885(2):022048.
- [7] FAN Zhun,LIN Huibiao,LI Chong,et al.Use of parallel ResNet for high-performance pavement crack detection and measurement[J].Sustainability,2022,14(3):1825.
- [8] QU Z,CAO C,LIU L,et al.A deeply supervised convolutional neural network for pavement crack detection with multiscale feature fusion[J].IEEE Transactions on Neural Networks and Learning Systems,2021:99:1-10.
- [9] 罗晖,贾晨,李健.基于改进YOLOv4的公路路面病害检测算法[J].激光与光电子学进展,2021,58(14):1410025.(LUO Hui,JIA Chen,LI Jian.Road surface disease detection algorithm based on improved YOLOv4[J].Laser & Optoelectronics Progress,2021,58(14):1410025.)
- [10] MEI Qipei,GüL M.A cost effective solution for pavement crack inspection using cameras and deep neural networks[J].Construction and Building Materials,2020,256:119397.
- [11] 沙爱民,童峥,高杰.基于卷积神经网络的路表病害识别与测量[J].中国公路学报,2018,31(1):1-10.(SHA Aimin,TONG Zheng,GAO Jie.Recognition and measurement of pavement disasters based on convolutional neural networks[J].China Journal of Highway and Transport,2018,31(1):1-10.)
- [12] SONG Weidong,JIA Guohui,ZHU Hong,et al.Automated pavement crack damage detection using deep multiscale convolutional features[J].Journal of Advanced Transportation,2020,2020:1-11.
- [13] YANG Fan,ZHANG Lei,YU Sijia,et al.Feature pyramid and hierarchical boosting network for pavement crack detection[J].IEEE Transactions on Intelligent Transportation Systems,2020,21(4):1525-1535.
- [14] SHI Yong,CUI Limeng,QI Zhiquan,et al.Automatic road crack detection using random structured forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445.
- [15] LIU Yahui,YAO Jian,LU Xiaohu,et al.DeepCrack:a deep hierarchical feature learning architecture for crack segmentation[J].Neurocomputing,2019,338:139-153.
- [16] 刘宪明,辛公锋.国内基于深度学习的道路路面病害检测研究综述[J].电子世界,2021(8):96-98.(LIU Xianming,XIN Gongfeng.Summary of domestic research on road pavement disease detection based on deep learning[J].Electronics World,2021(8):96-98.)
- [17] JIA Guohui,SONG Weidong,JIA Di,et al.Sample generation of semi-automatic pavement crack labelling and robustness in detection of pavement diseases[J].Electronics Letters,2019,55(23):1235-1238.
- [18] 董彦锋,胡伍生,余龙飞,等.深度学习的街景行道树自动识别提取研究[J].测绘科学,2021,46(2):139-145.(DONG Yanfeng,HU Wusheng,YU Longfei,et al.Research on automatic recognition and extraction of street trees based on deep learning[J].Science of Surveying and Mapping,2021,46(2):139-145.)
- [19] 彭新月,张吴明,钟若飞.改进YOLOv3模型的GF-2卫星影像车辆检测[J].测绘科学,2021,46(12):147-154.(PENG Xinyue,ZHANG Wuming,ZHONG Ruofei.Vehicle detection in GF-2 satellite images based on improved YOLOv3 model[J].Science of Surveying and Mapping,2021,46(12):147-154.)
- [20] RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015,[S.l.:s.n.],2015:234-241.
- [21] RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015,[S.l.]:Springer,2015:234-241.
- [22] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA:IEEE,:3431-3440.
- [23] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,:770-778.