缔合勒让德函数的跨阶次递推公式Recurrence formulas between every other order and degree for Associated Legendre functions
张捍卫,杨永勤,张华,李晓玲
摘要(Abstract):
缔合勒让德函数是地球科学领域中的主要数学工具之一。针对超高阶球谐重力场模型的构建与快速计算,以及跨阶次递推公式的适用性问题,该文利用勒让德函数的原理性公式,给出了3种类型的跨阶次递推公式。当次为0和1时,第1种采用了标准向前按列递推公式,第2和第3种则是采用了列式递推公式。其中,第一种是学界经常采用的公式。研究表明,在要求相对误差为1.0E-11情况下,3种类型的跨阶次递推公式都可以至少递推至15 000阶。在两个极点处,第2种和第3种算法的适用性优于第1种算法,但是第1种算法的计算精度优于后两种算法。
关键词(KeyWords): 缔合勒让德函数(ALFs);完全规格化的缔合勒让德函数(fnALFs);跨阶次递推公式;适用性和普适性
基金项目(Foundation): 国家自然科学基金项目(42074002,41931075)
作者(Author): 张捍卫,杨永勤,张华,李晓玲
DOI: 10.16251/j.cnki.1009-2307.2022.09.006
参考文献(References):
- [1]HOBSON E W.The theory of spherical and ellipsoidal harmonics[M].Cambridge:Cambridge University Press,1931.
- [2]HEISKANEN W A,HELMUT M.Physical geodesy[M].San Francisco:Freeman and Company,1967.
- [3]陆仲连.球谐函数[M].郑州:测绘学院,1984.(LUZhonglian.Spherical harmonic functions[M].Zhengzhou:Institute of Surveying and Mapping,1984.)
- [4]HOLMES S A,FEATHERSTONE W E.A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions[J].Journal of Geodesy,2002,76(5):279-299.
- [5]BELIKOV M V.Spherical harmonic analysis and synthesis with the use of column wise recurrence relations[J].Manuscripta Geodaetica,1991,16:384-410.
- [6]张传定,许厚泽,吴星.地球重力场调和分析中的“轮胎”问题[C]∥大地测量与地球动力学进展论文集.武汉:湖北省科学技术协会,2004.(ZHANG Chuanding,XU Houze,WU Xing.The“tire”problem in the harmonic analysis of the Earth’s gravity field[C]∥Advances in Geodesy and Geodynamics.Wuhan:Hubei Association for Science and Technology,2004.)
- [7]杨正辉,魏子卿,马健.第二类连带勒让德函数及其一阶、二阶导数的递推计算方法[J].武汉大学学报(信息科学版),2020,45(2):213-218.(YANG Zhenghui,WEI Ziqing,MA Jian.Recursive calculation method for the second kind of associated Legendre functions and its first and second derivatives[J].Geomatics and Information Science of Wuhan University,2020,45(2):213-218.)
- [8]朱永超,万晓云,周保兴.基于双精度与四精度的重力场解算精度分析[J].大地测量与地球动力学,2020,40(1):94-97.(ZHU Yongchao,WAN Xiaoyun,ZHOUBaoxing.Accuracy analysis of the double precision and quadruple precision gravity field solution[J].Journal of Geodesy and Geodynamics,2020,40(1):94-97.)
- [9]黄炎,王庆宾,马越原,等.缔合勒让德函数递推快速并行算法[J].海洋测绘,2019,39(4):40-44.(HUANGYan,WANG Qingbin,MA Yueyuan,et al.Fast parallel recursive algorithms for associated Legendre functions[J].Hydrographic Surveying and Charting,2019,39(4):40-44.)
- [10]LEI Weiwei,LI Kai.Evaluating applicability of four recursive algorithms for computation of the fully normalized associated legendre functions[J].Journal of Applied Geodesy,2016,10(4):267-275.
- [11]WITTWER T,KLEES R,SEITZ K,et al.Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic[J].Journal of Geodesy,2008,82(4/5):223-229.
- [12]刘缵武,刘世晗,黄欧.超高阶次勒让德函数递推计算中的压缩因子和Horner求和技术[J].测绘学报,2011,40(4):454-458.(LIU Zuanwu,LIU Shihan,HUANG Ou.Scale factors in recursion of ultra-high degree and order Legendre functions and Horner’s scheme of summation[J].Acta Geodaetica et Cartographica Sinica,2011,40(4):454-458.)
- [13]GRUBER C,ABRYKOSOV O.On computation and use of Fourier coefficients for associated Legendre functions[J].Journal of Geodesy,2016,90(6):525-535.
- [14]SEIF M R,SHARIFI M A,ESHAGH M.Polynomial approximation for fast generation of associated Legendre functions[J].Acta Geodaetica et Geophysica,2018,53(2):275-293.
- [15]FUKUSHIMA T.Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers:III integral[J].Computers&Geosciences,2014,63:17-21.
- [16]FUKUSHIMA T.Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers[J].Journal of Geodesy,2012,86(4):271-285.
- [17]于锦海,曾艳艳,朱永超,等.超高阶次Legendre函数的跨阶数递推算法[J].地球物理学报,2015,58(3):748-755.(YU Jinhai,ZENG Yanyan,ZHU Yongchao,et al.A recursion arithmetic formula for Legendre functions of ultra-high degree and order on every other degree[J].Chinese Journal of Geophysics,2015,58(3):748-755.)
- [18]PAUL M K.Recurrence relations for integrals of Associated Legendre functions[J].Bulletin Géodésique,1978,52(3):177-190.