基于显著性卷积神经网络的变化检测方法Change detection method based on saliency convolutional neural network
任建设,王枭轩,张向军,禹小伟,余海坤
摘要(Abstract):
针对变化检测方法对差异遥感影像去除斑点噪声和地物边缘检测效果不佳的问题,该文提出一种基于显著性卷积神经网络(SCWNN)的变化检测方法。该方法采用上下文感知显著性检测方法,提高遥感影像中差异较大区域显著性值,减小差异较小区域显著性值,有效优化了地物边缘,同时降低斑点噪声;然后采用卷积神经网络方法,克服了由于样本不足对变化检测精度的影响。通过超高分辨率影像和合成孔径雷达两组双时相遥感影像数据进行实验,结果表明方法的有效性和鲁棒性。
关键词(KeyWords): 变化检测;显著性卷积神经网络;地物边缘;斑点噪声;遥感影像
基金项目(Foundation): 国家重点研发计划项目(2016YFC0803103);; 河南省高校创新团队支持计划项目(14IRTSTHN026)
作者(Author): 任建设,王枭轩,张向军,禹小伟,余海坤
DOI: 10.16251/j.cnki.1009-2307.2022.09.023
参考文献(References):
- [1]董友强,李晓龙,崔斌.一种针对精化样本的非监督SAR变化检测方法[J].测绘科学,2021,46(11):91-97.(DONG Youqiang,LI Xiaolong,CUI Bin.An unsupervised SAR change detection method targeting at refined sample[J].Science of Surveying and Mapping,2021,46(11):91-97.)
- [2]高仁强,陈亮雄,杨静学,等.一种高分影像随机森林变化检测方法[J].测绘科学,2020,45(11):130-138.(GAO Renqiang,CHEN Liangxiong,YANG Jingxue,et al.A method of random forest change detection based on high resolution image[J].Science of Surveying and Mapping,2020,45(11):130-138.)
- [3]崔斌,张永红,闫利,等.一种基于卷积神经网络的SAR变化检测方法[J].测绘科学,2019,44(6):170-175.(CUI Bin,ZHANG Yonghong,YAN Li,et al.A method of SAR change detection based on convolutional neural networks[J].Science of Surveying and Mapping,2019,44(6):170-175.)
- [4]张良培,武辰.多时相遥感影像变化检测的现状与展望[J].测绘学报,2017,46(10):1447-1459.(ZHANGLiangpei,WU Chen.Advance and future development of change detection for multi-temporal remote sensing imagery[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1447-1459.)
- [5]何鹏飞.基于不确定性分析的遥感影像变化检测方法研究[D].徐州:中国矿业大学,2017.(HE Pengfei.Research on the remotely sensed images change detection methods based on uncertainty analysis[D].Xuzhou:China University of Mining and Technology,2017.)
- [6]SADEGHI V,FARNOOD AHMADI F,EBADI H.Design and implementation of an expert system for updating thematic maps using satellite imagery(case study:Changes of Lake Urmia)[J].Arabian Journal of Geosciences,2016,9(4):1-17.
- [7]MAURYA S P,YADAV A K.Evaluation of course change detection of Ramganga River using remote sensing and GIS,India[J].Weather and Climate Extremes,2016,13:68-72.
- [8]LYU Pengyuan,ZHONG Yanfei,ZHAO Ji,et al.Change detection based on a multifeature probabilistic ensemble conditional random field model for high spatial resolution remote sensing imagery[J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):1965-1969.
- [9]LI Hao,GONG Maoguo,WANG Qiao,et al.Amultiobjective fuzzy clustering method for change detection in SAR images[J].Applied Soft Computing,2016,46:767-777.
- [10]TIAN Dayong,GONG Maoguo.A novel edge-weight based fuzzy clustering method for change detection in SAR images[J].Information Sciences,2018,467:415-430.
- [11]HE Pengfei,SHI Wenzhong,MIAO Zelang,et al.Advanced Markov random field model based on local uncertainty for unsupervised change detection[J].Remote Sensing Letters,2015,6(9):667-676.
- [12]BRUZZONE L,PRIETO D F.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):1171-1182.
- [13]SUBUDHI B N,BOVOLO F,GHOSH A,et al.Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images[J].Optics&Laser Technology,2014,57:284-292.
- [14]KOCH C,POGGIO T.Predicting the visual world:Silence is golden[J].Nature Neuroscience,1999,2(1):9-10.
- [15]赵江洪,张晓光,杨璐,等.深度学习的遥感影像舰船目标检测[J].测绘科学,2020,45(3):110-116.(ZHAOJianghong,ZHANG Xiaoguang,YANG Lu,et al.Ship detection in remote sensing based on deep learning[J].Science of Surveying and Mapping,2020,45 (3):110-116.)
- [16]GAO Feng,WANG Xiao,GAO Yunhao,et al.Sea ice change detection in SAR images based on convolutionalwavelet neural networks[J].IEEE Geoscience and Remote Sensing Letters,2019,16(8):1240-1244.
- [17]CHEN Hao,SHI Zhenwei.A spatial-temporal attentionbased method and a new dataset for remote sensing image change detection[J].Remote Sensing,2020,12(10):1662.